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ВВЕДЕНИЕ

Транскриптомика и высокопроизводи-
тельные методы исследования, такие как 
РНК-секвенирование (RNA-seq) или микрочи-
пы (MicroArray), сегодня, без сомнений, зани-
мают важное место в арсенале инструментов для 
изучения молекулярных механизмов биологиче-
ских систем, патогенеза различных заболеваний 
и поиска их маркеров [1]. 

Идентификация дифференциально экспрес-
сируемых генов (ДЭГ) или транскриптов в раз-

личных условиях (группах сравнения) — одна из 
важных задач транскриптомного профилирова-
ния. Данные по дифференциальной экспрессии 
обычно представляются в матричном виде, где 
каждая строка соответствует гену (или транс-
крипту), а каждый столбец — образцу, в ячейках 
указывается уровень экспрессии гена в образце 
[2]. Основная исследовательская проблема — 
это обнаружение статистически значимых ДЭГ 
между различными группами образцов (напри-
мер, здоровыми и больными). Одна из частых 
проблем, возникающих при статистической об-
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Высокопроизводительные методы исследования транскриптома позволяют оценить огромное 
количество факторов, что ценно для ученых, но порождает проблему “проклятия размерности”, 
что повышает требования к методам обработки и анализа данных. В представленной работе 
мы предлагаем новый алгоритм, объединяющий методы Монте-Карло и машинное обучение. 
Этот алгоритм позволит сократить пространство признаков, подсвечивая гены, с наибольшей 
вероятностью ассоциированные с определенными заболеваниями. Представленный подход 
позволяет не только сформировать набор “интересных” генов, но и взвесить их множество, 
присвоив каждому гену меру его “важности”. Эта мера может быть использована как в последующем 
статистическом анализе, так и при визуализации и интерпретации результатов. Работа алгоритма 
продемонстрирована нами на открытых данных профилирования больных гипертрофической 
кардиомиопатией. По результатам анализа выявлены гены MYH6, FCN3, RASD1 и SERPINA3, что 
хорошо согласуется с опубликованными данными.
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Сокращения: ДЭГ — дифференциально экспрессирующиеся гены; ГКМП — гипертрофическая кардиомиопатия; 
ROC-AUC (ROC = receiver operating characteristic, AUC = area under the curve) — метрика качества классификации; 
p-valMW — p-value по критерию Манна–Уитни; FDRBH (FDR — False Discovery Rate) — поправка на множественные 
сравнения Бенджамини–Хохберга; FDRwBH — взвешенная поправка на множественные сравнения Бенджамини–
Хохберга; ВесML — вес гена, отображающий его значимость для классификационных моделей по результатам 
симуляций Монте–Карло; log2FC — логарифм отношения средних; ML (Machine Learning) — машинное обучение.
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работке таких данных, связана с “проклятием 
размерности” [3].

“Проклятие размерности” — это феномен, 
при котором с увеличением количества измере-
ний или переменных входных данных увеличи-
вается объем пространства признаков, что мо-
жет привести к увеличению шума и ошибочным 
выводам. Средняя размерность пространства 
признаков данных при транскриптомном про-
филировании превышает 10 000. Средний раз-
мер выборок меньше 100 точек. Таким образом, 
несмотря на богатство информации, получае-
мой с помощью высокопроизводительных мето-
дов исследования, интерпретация этих данных 
может быть сложной из-за большого количества 
генов и малого количества образцов.

К стандартным средствам решения обозна-
ченной проблемы относятся различные инстру-
менты корректировки значений p-value с учетом 
множественных сравнений, широко исполь-
зуемые внутри таких популярных пакетов, как 
EdgeR [4] или Limma [5].

В данной работе мы предлагаем новый под-
ход, основанный на использовании методов 
машинного обучения (ML), для уменьшения 
размерности данных и выделения ключевых ге-
нов, имеющих наибольший шанс быть ассоции-
рованными с исследуемым заболеванием, с по-
следующим применением взвешенных процедур 
коррекции на множественные сравнения. Веса 
для корректировки значений p-value также по-
лучаются с помощью методов ML.

Суть подхода заключается в том, чтобы на 
данных транскриптомного профилирования ра-
зыграть методом Монте-Карло классификаторы 
с высокой обобщающей способностью. Далее из 
этих классификаторов извлекаются важные для 
их работы признаки, или ключевые гены и фор-
мируется редуцированное пространство при-
знаков для последующего тестирования в нем 
гипотез об ассоциации стандартными методами. 
Полученное пространство признаков также бу-
дет взвешенным пространством, т.е. с заданной 
на нем весовой функцией или мерой. Вес будет 
задаваться как доля моделей, в которую был 
включен ген, умноженная на метрику качества 
ROC-AUC, усредненную по этим моделям. Этот 
вес будет использоваться при проведении взве-
шенных процедур коррекции на множественное 
тестирование гипотез, таких как взвешенные 
методы Бонферрони, Холма или Бенджамини–
Хохберга. 

Первоначально перечисленные методы взве-
шенной коррекции были разработаны для воз-

можности учета априорной информации [6, 7]. 
В настоящее время бо́льшая часть работ, по-
священная развитию этих методов, сводится 
к постановке задачи максимизации мощности 
статистических тестов по вектору весов [8, 9]. В 
представленной работе мы предлагаем вернуть-
ся к классической постановке с заданием весо-
вых коэффициентов, отражающих некоторую 
априорную информацию, которые мы получаем 
из данных (data driven approach), а именно из эф-
фективности работы классификаторов. Другими 
словами, как описано выше, чем в бо́льшее чис-
ло хорошо работающих классификаторов вклю-
чен тот или иной ген в Монте-Карло симуляци-
ях, тем выше его вес.

Таким образом, в представленном исследо-
вании вместо распространенного подхода (от 
фундаментальных наблюдений за изменения-
ми транскриптома при различных состояниях к 
созданию классификатора для целей приклад-
ной медицины), мы предлагаем идти в обрат-
ном направлении: от эффективно работающих 
классификаторов к пониманию патогенетиче-
ских процессов, приводящих к изменениям в 
транскриптоме, которые и улавливаются этими 
классификаторами.

Для демонстрации работы предлагаемо-
го подхода были выбраны открытые данные 
транскриптомного профилирования больных 
гипертрофической кардиомиопатией (ГКМП): 
GSE36961 и GSE1145.

МЕТОДЫ
Кратко, на первом этапе мы начинаем с за-

грузки и предварительной обработки набора 
данных GSE36961 по стандартному протоколу 
[5]. Для обучения классификаторов мы форми-
руем матрицу данных размера n m× , где n — чис-
ло наблюдений, m — число признаков/генов; 
зависимая переменная представляет собой век-
тор из (0, 1), где 0 — отсутствие ГКМП, 1 — на-
личие ГКМП. Задача классификации ставится 
так, чтобы научиться по вектору признаков 
(уровней экспрессии генов) предсказывать “на-
личие ГКМП”.

Для поиска генов, вовлеченных в патогенез 
ГКМП, методом Монте-Карло мы разыгрывали 
L1-регуляризованные классификаторы на базе 
логистической регрессии. L1-регуляризация по-
зволяет прореживать признаковое пространство, 
оставляя в классификационной модели только 
наиболее значимые признаки (гены). Используя 
это свойство, мы и будем осуществлять отбор 
признаков. Далее мы обучали 3000 моделей (про-
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водили 3000 симуляций), извлекая обучающую 
выборку по схеме с возвращением. Извлекали 
только наблюдения (строки). Гены (признаки, 
столбцы) не извлекались. Каждое наблюдение 
(строка) извлекалось с возвращением равнове-
роятно и независимо. Тестовая выборка фор-
мировалась из наблюдений, которые не попали 
в обучающую выборку. В итоге обучающая и 
тестовая выборка формировались в примерном 
соотношении 8 : 2. Таким образом, мы не пола-
гаемся на одну модель, а симулируем множество 
различных экспериментов на различных выбор-
ках, полученных за счет извлечения исходной 
выборки. 

Перед запуском алгоритма регуляризацион-
ный коэффициент подбирали так, чтобы каче-
ство модели по метрике ROC-AUC снижалось 
минимально. Подбор коэффициента и оценку 
качества осуществляли на размеченной обуча-
ющей выборке, используя кросс-валидацию. 
Таким образом, мы допускаем переобучение, 
но оставляем максимальное количество генов, 
исходя из идеи, что несостоятельные признаки 
будут реже включаться в модель, что напрямую 
отразиться на их весе.

Исходя из обученных моделей, составляли 
множество отобранных генов, которым присва-
ивали вес по следующей формуле:
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где I gene modelj i∈ �— индикатор включения j-го гена 

в i-ю модель, ROCAUCi �— метрика ROC-AUC для 
i-модели, n �— число итераций.

Таким образом, в качестве веса принята доля 
моделей, в которую был включен ген, умно-
женная на метрику качества ROC-AUC, усред-
ненную по этим моделям. ROC-AUC модели 
включаются в расчет веса гена, чтобы различать 
гены, отобранные в одинаковое число моделей, 
но различающиеся качеством классификации. 
В последующем нас будут интересовать гены, 
которые чаще всего включаются в наилучшие 
классификаторы. В этом случае присваиваемый 
вес позволит релевантным образом упорядочить 
список генов для их последующей обработки. 
Гены, которые входят в состав менее, чем 5% 

моделей и имеют низкий вес, будут исключены 
из дальнейшего рассмотрения.

Валидацию результатов проводили на неза-
висимом наборе данных (GSE1145), который не 
использовали при обучении или тестировании. 
Для оценки ассоциации (тестирование гипо-
тезы левого или правого сдвига) использовали 
непараметрический критерий Манна–Уитни 
[10], поправку на множественные сравнения 
Бенджамини–Хохберга [11], а также взвешен-
ную поправку на множественные сравнения 
Бенджамини–Хохберга по схеме, описанной в 
работе [12].

Статистические тесты проводили с исполь-
зованием модуля SciPy version: 1.7.3. Для обуче-
ния моделей, их тестирования и препроцессин-
га данных использовали модуль sklearn version: 
0.24.2 [13].

Код алгоритма доступен по ссылке: https://
github.com/GJOsmak/MolBiol2024.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ

Всего на чипе GSE36961 представлено 37846 
транскриптов. После предобработки данных, 
удаления пропусков, мультимаперов и нулевых 
прочтений для анализа осталось 14830 транс-
криптов. Таким образом, изначальная размер-
ность пространства составила 14830 при выбор-
ке объемом 145 наблюдений. На этих данных мы 
провели 3000 Монте-Карло симуляций, как это 
описано в разделе Методы.

Мы предполагаем, что если какой-то ген 
сильно ассоциирован с исследуемым заболева-
нием, то он будет входить в большинство мо-
делей вне зависимости от способа разбиения 
выборки (номера итерации). При оценке сходи-
мости алгоритма мы решили назвать “наиболее 
значимыми генами” те, которые включаются не 
менее, чем в половину моделей.

Как видно из рис. 2а, алгоритм сходится по 
числу наиболее значимых генов: после ~2000-ой 
итерации состав таких генов не меняется и схо-
дится к шести генам (MYH6, CDC42EP4, RASD1, 
PRKCD, FCN3, ZFP36). Из рис. 2б видно, что по-
сле 2000 итераций прирост новых генов (зеленая 
линия), как и увеличение веса наиболее значи-
мых генов (красная линия), выходят на стацио-
нарное состояние. При этом скорость увеличе-
ния веса наиболее значимых генов превосходит 
скорость прироста новых генов. Следовательно, 
можно предположить, что все ассоциирован-
ные с исследуемым заболеванием гены были 
отобраны на 2000 итерациях. Все отбираемые в 
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Рис. 1. Схема исследования.

Рис. 2. Результаты проведения Монте–Карло симуляций по обучению классификаторов. а — Сходимость алгоритма 
по объему множества наиболее значимых генов; красные штрихи вдоль оси абсцисс показывают моменты измене-
ния состава этого множества. б — Динамика роста в зависимости от итерации алгоритма числа отбираемых генов 
(зеленая линия); веса генов, включенных более чем в половину моделей (красная линия); итерация, на которой 
изменено множество наиболее значимых генов (красные вертикальные штрихи вдоль оси абсцисс). в — Гистограм-
ма распределения меры ROC-AUC для ML-классификаторов в 3000 симуляциях Монте–Карло. г — Гистограмма 
распределения расчетного веса генов, включенных, по крайней мере, в одну модель.

а б

в г

Чи
сл

о 
ге

но
в,

 в
кл

ю
че

нн
ы

х
бо

ле
е 

че
м 

в 
по

ло
ви

ну
 м

од
ел

ей

Ко
ли

че
ст

во
 ге

но
в,

 в
кл

ю
че

нн
ы

х
хо

тя
 б

ы
 в

 о
дн

у 
мо

де
ль

Су
мм

ар
ны

й 
ве

с 
ге

но
в,

 в
кл

ю
че

нн
ы

х
бо

ле
е 

че
м 

в 
по

ло
ви

ну
 м

од
ел

ей

14
400

600 350

300

250

200

150

100

50

0
0.0 0.2 0.4 0.6 0.8

500

400

300

200

100

0
0.800 0.825 0.850 0.875 0.900 0.925 0.950 0.975 1.000

5

4

3

2

1

0

350

300

250

200

150

100

50

0

12

10

8

6

4

2

0
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000

Чи
сл

о 
мо

де
ле

й

Чи
сл

о 
ге

но
в

Расчетный вес

Номер итерации Номер итерации

ROC-AUC

GSE36961

Выбор 80%
по схеме
с возвращением

Обучающая
выборка

Тестовая
выборка

featurej − µtrain
σtrain

featurej − µtrain
σtrain

Монте-Карло симуляция

Список
«ген: вес*»

*вес пропорционален числу
моделей, в который ген был 

включен, а также размеру
ROC-AUC этих моделей

Тестирование на независимом наборе данных
GSE1145 с поправкой на множественные

сравнения, учитывающей вычисленный вес

График экспрессии генов
(Volcano plot)

Отбор генов с весом выше 
5% квантиля

L1LogReg
ROC-AUC
отбор генов с

коэффициентами > 0

Обновление словаря
отобранных генов
{genei: weightsi}



ОСЬМАК, ПИСКЛОВА158

МОЛЕКУЛЯРНАЯ БИОЛОГИЯ     том 59     № 1     2025

последующем гены относятся к шуму и связаны 
скорее со способом разбиения выборки, чем с 
исследуемым заболеванием.

В результате, по меньшей мере в одну из 3000 
моделей были включены 425 генов в различных 
комбинациях. Как видно из рис. 2в, большин-
ство моделей обладают высоким показателем 
ROC-AUC (больше 0.9). При этом большин-
ство генов (368 из 425) включаются меньше чем 
в 5% моделей (рис. 2г). Исходя из предположе-
ния, что ассоциированный с заболеванием ген 
будет входить в большинство моделей, мы де-
лаем вывод, что полезность этих 368 генов для 
классификаторов связана скорее со способом 
разбиения выборки, чем с заболеванием. Для 
последующего анализа веса этих генов прирав-
ниваются к нулю. В результате пространство те-
стируемых гипотез сокращается до 57 генов, т.е. 
в 260 раз от объема изначального пространства 
(14830 генов).

Как видно из рис. 3, не все из отобранных 
выше шести “наиболее значимых генов” ока-
зались статистически значимо ассоциированы 
с исследуемым заболеванием. Ассоциация не 
подтвердилась для генов CDC42EP4, PRKCD, 
ZFP36. С другой стороны, из рис. 3а видно, что 

наравне с генами MYH6, FCN3 и RASD1, стати-
стически значимо ассоциирован и сильно ме-
няет свою экспрессию по log2FC ген SERPINA3, 
который не добрал 0.06 долей веса, чтобы войти 
в список “наиболее значимых генов”. Из рис. 3б  
видно, что не все гены, прошедшие поправку на 
множественные сравнения (FDRBH), прошли 
взвешенную поправку (FDRwBH). К таким генам 
относятся INTU, HEG1, SYF2, NKD2, ASPSCR1.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

В рамках данного исследования мы разра-
ботали и успешно применили алгоритм на ос-
нове метода Монте-Карло для разыгрывания 
устойчивых классификаторов и прореживания 
с их помощью пространства признаков (генов). 
В результате этого анализируемое пространство 
было уменьшено в ~260 раз c 14830 до 57 генов, 
которые при последующем тестировании ги-
потез об ассоциации сократились до 12 генов: 
MNS1, FCN3, CHRDL2, MYH6, CAPN1, CD97, 
S100A9, PROS1, CHN1, SERPINA3, AP3M2, 
RASD1, из которых по совокупности признаков 
(расчетный вес, log2FC, скорректированный 

Рис. 3. Тестирование гипотез об ассоциации отобранных генов на независимом наборе данных GSE1145. а — Гра-
фик сравнения экспрессии генов (Volcano plot), размер точек обозначает их ВесML. б — Сводная таблица статистик; 
показаны только значимые (по p-value) результаты. p-valMW — p-value по критерию Манна–Уитни; FDRBH — по-
правка на множественные сравнения Бенджамини–Хохберга; FDRwBH — взвешенная поправка на множественные 
сравнения Бенджамини–Хохберга; ВесML — вес гена, отображающий его значимость для классификационных мо-
делей по результатам Монте–Карло симуляций; log2FC — логарифм отношения средних.
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p-value) наибольшего внимания заслуживают 
MYH6, FCN3, RASD1 и SERPINA3.

Большая часть моделей при обучении об-
ладала высокими показателями метрики ROC-
AUC (мода = 0.96, см. рис. 2в). С другой сто-
роны, большинство генов включались меньше 
чем в 5% моделей (см. рис. 2г). Этот результат 
хорошо согласуется с последствиями обучения 
моделей в пространстве высокой размерности, 
где легко подобрать такой набор признаков, в 
пространстве которых конкретно взятая выбор-
ка будет хорошо разделима, однако это будет ар-
тефактом, а не ценным результатом [3].

Ген MYH6 кодирует альфа-изоформу тяже-
лой цепи сердечного миозина (α-MHC), кото-
рая экспрессируется во всем миокарде на ран-
них стадиях развития сердца. По мере развития 
эмбриона человека экспрессия гена MYH6 в же-
лудочках снижается и заменяется экспрессией 
MYH7 [14]. В ряде работ показана ассоциация 
этого гена с ГКМП [15, 16].

Продукт гена FCN3 — мощный активатор 
пути комплемента на основе лектина [17], ас-
социированный, согласно [18, 19], с сердечной 
недостаточностью и ишемической кардиомио-
патией [20].

Мономерный белок RASD1 экспрессируется 
в сердечной ткани на низком уровне [21]. Нок-
даун гена RASD1 в кардиомиоцитах предсердий, 
приводит к существенному увеличению экс-
прессии предсердного натрийуретического фак-
тора [22, 23], однако каких-либо связей RASD1 
с кардиомиопатиями на данный момент не вы-
явлено.

SERPINA3, также называемый α-1-анти-
химотрипсином (AACT, ACT), является одним 
из ингибиторов сериновых протеаз, в частно-
сти катепсина G [24]. Как белок острой фазы, 
секретируемый в плазму клетками печени, 
SERPINA3 играет важную роль в противовоспа-
лительной реакции и противовирусном ответе. 
Повышенные уровни SERPINA3 наблюдаются 
при сердечной недостаточности и неврологиче-
ских заболеваниях [25].

Таким образом, часть обнаруженных с по-
мощью предложенного алгоритма генов непо-
средственно связана с исследуемым заболева-
нием, другая часть — косвенно, т.е. полученные 
результаты не противоречат опубликованным 
данным. Стоит также отметить, что такие же 
наборы данных, GSE36961 и GSE1145, анали-
зируют в работе [26], используя “стандартные” 
подходы, и приходят к похожему набору генов: 
RASD1, CDC42EP4, MYH6 и FCN3. Таким об-

разом, предлагаемый нами подход хорошо со-
ответствует результатам стандартных подходов, 
а его преимущество состоит в возможности 
полной алгоритмизации и минимальном коли-
честве произвольных решений. В дополнение, 
по результатам нашего анализа добавляется еще 
один параметр оценки “значимости” генов — 
вес. Варианты его использования показаны на 
рис. 3.

ЗАКЛЮЧЕНИЕ
В нашей работе предложен новый алгоритм 

анализа данных транскриптомного профили-
рования. Результаты работы алгоритма хорошо 
согласуются с опубликованными данными и 
открывают новые возможности анализа посред-
ством генерации взвешенного пространства 
признаков (генов), в противовес “стандартной” 
ситуации, когда все признаки (гены) рассматри-
ваются как “равные”.

Работа поддержана грантом РНФ № 23-75-01050. 
Работа выполнена без привлечения людей и живот-
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Transcriptomics and the “Curse of Dimensionality”: Monte Carlo Simulations  
of ML-Models as a Tool for Analyzing Multidimensional Data in Tasks  

of Searching Markers of Biological Processes
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High-throughput transcriptomic research methods provide the assessment of a vast number of factors, 
valuable for researchers. At the same time the “curse of dimensionality” issues arise, which lead to increasing 
requirements on data processing and analysis methods. In this study, we propose a new algorithm that 
combines Monte Carlo methods and machine learning. This algorithm will enable feature space reduction 
by highlighting genes most likely associated with the investigated diseases. Our approach allows not only to 
generate a set of “interesting” genes but also to assign weight to each gene, indicating its “importance”. This 
measure can be used in subsequent statistical analysis, visualization, and interpretation of results. Algorithm 
performance was demonstrated on open transcriptomic data of patients with HCM (GSE36961 and 
GSE1145). The analysis revealed genes MYH6, FCN3, RASD1, and SERPINA3, which is in good agreement 
with the available literature.

Keywords: transcriptomics, machine learning, Monte Carlo, hypertrophic cardiomyopathy, biomarkers
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