- Код статьи
- S30345553S0026898425040094-1
- DOI
- 10.7868/S3034555325040094
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 59 / Номер выпуска 4
- Страницы
- 629-645
- Аннотация
- Активные формы кислорода и азота, накапливающиеся в клетках при окислительном стрессе, вызывают повреждение различных компонентов клеток, включая ДНК, белки и липиды, и приводят, как следствие, к развитию ряда тяжелых заболеваний, таких как атеросклероз. Белок С3 является центральным компонентом каскада комплемента и важным регулятором воспалительного ответа. Провоспалительная активность С3 может также вносить вклад в развитие метаболического синдрома. Основным источником С3 в плазме крови является его синтез в гепатоцитах. Однако регуляция экспрессии гена С3 при окислительном стрессе в гепатоцитах остается неизученной. В данной работе впервые показано, что окислительный стресс, индуцированный пероксидом водорода, угнетает экспрессию гена С3 и секрецию белка С3 клетками HepG2 гепатомы человека. Идентифицирован кластер сайтов связывания транскрипционного фактора FOXO1, активирующего экспрессию гена С3, в дистальной области промотора гена С3. Кроме того, FOXO1 способен связываться с проксимальной областью промотора гена С3, образуя комплекс с фактором транскрипции HNF4α. Подавление экспрессии гена С3 в условиях окислительного стресса зависит от активации основных MAP-киназных каскадов (ERK1/2, JNK и, в меньшей степени, p38), киназы AMPK и факторов транскрипции NF-kB, HNF4α и FOXO1. Таким образом, впервые детально изучены молекулярные механизмы, контролирующие подавление экспрессии гена С3 в клетках HepG2 в условиях окислительного стресса.
- Ключевые слова
- компонент комплемента С3 окислительный стресс пероксид водорода FOXO1 HNF4α клетки гепатомы HepG2
- Дата публикации
- 31.01.2026
- Год выхода
- 2026
- Всего подписок
- 0
- Всего просмотров
- 71
Библиография
- 1. Rani V., Deep G., Singh R.K., Palle K., Yadav U.C.S. (2016) Oxidative stress and metabolic disorders: pathogenesis and therapeutic strategies. Life Sci. 148, 183–193. https://doi.org/10.1016/j.lfs.2016.02.002
- 2. Kyriakis J.M., Avruch J. (2012) Mammalian MAPK signal transduction pathways activated by stress and inflammation: a 10-year update. Physiol. Rev. 92, 689–737. https://doi.org/10.1152/physrev.00028.2011
- 3. Schieber M., Chandel N.S. (2014) ROS function in redox signaling and oxidative stress. Curr. Biol. 24, R453–R462. https://doi.org/10.1016/j.cub.2014.03.034
- 4. Bedard K., Krause K.-H. (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol. Rev. 87, 245–313. https://doi.org/10.1152/physrev.00044.2005
- 5. Donath M.Y., Shoelson S.E. (2011) Type 2 diabetes as an inflammatory disease. Nat. Rev. Immunol. 11, 98–107. https://doi.org/10.1038/nri2925
- 6. Walport M.J. (2001) Complement. First of two parts. N. Engl. J. Med. 344, 1058–1066. https://doi.org/10.1056/NEJM200104053441406
- 7. Sahu A., Lambris J.D. (2001) Structure and biology of complement protein C3, a connecting link between innate and acquired immunity. Immunol. Rev. 180, 35–48. https://doi.org/10.1034/j.1600-065x.2001.1800103.x
- 8. Ricklin D., Hajishengallis G., Yang K., Lambris J.D. (2010) Complement: a key system for immune surveillance and homeostasis. Nat. Immunol. 11, 785‒797. https://doi.org/10.1038/ni.1923
- 9. Mogilenko D.A., Danko K., Larionova E.E., Shavva V.S., Kudriavtsev I.V., Nekrasova E.V., Burnusuz A.V., Gorbunov N.P., Trofimov A.V., Zhakhov A.V., Ivanov I.A., Orlov S.V. (2022) Differentiation of human macrophages with anaphylatoxin C3a impairs alternative M2 polarization and decreases lipopolysaccharide-induced cytokine secretion. Immunol. Cell. Biol. 100, 186‒204. https://doi.org/10.1111/imcb.12534
- 10. Barbu A., Hamad O.A., Lind L., Ekdahl K.N., Nilsson B. (2015) The role of complement factor C3 in lipid metabolism. Mol. Immunol. 67, 101–107. https://doi.org/10.1016/j.molimm.2015.02.027
- 11. Muscari A., Massarelli G., Bastagli L., Poggiopollini G., Tomassetti V., Drago G., Martignani C., Pacilli P., Boni P., Puddu P. (2000) Relationship of serum C3 to fasting insulin, risk factors and previous ischaemic events in middle-aged men. Eur. Heart J. 21, 1081–1090. https://doi.org/10.1053/euhj.1999.2013
- 12. Hertle E., Van Greevenbroek M.M.J., Stehouwer C.D.A. (2012) Complement C3: an emerging risk factor in cardiometabolic disease. Diabetologia 55, 881–884. https://doi.org/10.1007/s00125-012-2462-z
- 13. Clarke H.G., Freeman T., Pryse-Phillips W. (1971) Serum protein changes after injury. Clin. Sci. 40, 337‒344. https://doi.org/10.1042/cs0400337
- 14. Alper C.A., Johnson A.M., Birtch A.G., Moore F.D. (1969) Human C3: evidence for the liver as the primary site of synthesis. Science. 163, 286–288. https://doi.org/10.1126/science.163.3864.286
- 15. Einstein L.P., Hansen P.J., Ballow M., Davis A.E. 3rd, Davis J.S. 4th, Alper C.A., Rosen F.S., Colten H.R. (1977) Biosynthesis of the third component of complement (C3) in vitro by monocytes from both normal and homozygous C3-deficient humans. J. Clin. Invest. 60, 963–969. https://doi.org/10.1172/JCI108876
- 16. Warren H.B., Pantazis P., Davies P.F. (1987) The third component of complement is transcribed and secreted by cultured human endothelial cells. Am.J. Pathol. 129, 9–13.
- 17. Lévi-Strauss M., Mallat M. (1987) Primary cultures of murine astrocytes produce C3 and factor B, two components of the alternative pathway of complement activation. J. Immunol. 139, 2361–2366.
- 18. Choy L.N., Rosen B.S., Spiegelman B.M. (1992) Adipsin and an endogenous pathway of complement from adipose cells. J. Biol. Chem. 267, 12736–12741. https://doi.org/10.1016/S0021-9258 (18)42338-1
- 19. Volanakis J.E. (1995) Transcriptional regulation of complement genes. Annu. Rev. Immunol. 12, 277–305. https://doi.org/10.1146/annurev.iy.13.040195.001425
- 20. Mogilenko D.A., Kudriavtsev I.V., Shavva V.S., Dizhe E.B., Vilenskaya G., Efremov A.M., Perevozchikov A.P., Orlov S.V. (2013) Peroxisome proliferator-activated receptor α positively regulates complement C3 expression but inhibits tumor necrosis factor α-mediated activation of C3 gene in mammalian hepatic-derived cells. J. Biol. Chem. 288, 1726–1738. https://doi.org/10.1074/jbc.M112.437525
- 21. Shavva V.S., Mogilenko D.A., Dizhe E.B., Oleinikova G.N., Perevozchikov A.P., Orlov S.V. (2013) Hepatic nuclear factor 4a positively regulates complement C3 expression and does not interfere with TNFα-mediated stimulation of C3 expression in HepG2 cells. Gene. 524, 187–192. https://doi.org/10.1016/j.gene.2013.04.036
- 22. Shavva V.S., Bogomolova A.M., Efremov A.M., Trofimov A.N., Nikitin A.A., Babina A.V., Nekrasova E.V., Dizhe E.B., Oleinikova G.N., Missyul B.V., Orlov S.V. (2018) Insulin downregulates C3 gene expression in human HepG2 cells through activation of PPARγ. Eur. J. Cell. Biol. 97, 204–215. https://doi.org/10.1016/j.ejcb.2018.03.001
- 23. Mogilenko D.A., Kudriavtsev I.V., Trulioff A.S., Shavva V.S., Dizhe E.B., Missyul B.V., Zhakhov A.V., Ischenko A.M., Perevozchikov A.P., Orlov S.V. (2012) Modified low density lipoprotein stimulates complement C3 expression and secretion via liver X receptor and Тoll-like receptor 4 activation in human macrophages. J. Biol. Chem. 287, 5954–5968. https://doi.org/10.1074/jbc.M111.289322.
- 24. Pascual G., Glass C.K. (2006) Nuclear receptors versus inflammation: mechanisms of transrepression. Trends Endocrinol. Metab. 17, 321–327. https://doi.org/10.1016/j.tem.2006.08.005
- 25. Glass C.K., Saijo K. (2010) Nuclear receptor transrepression pathways that regulate inflammation in macrophages and T cells. Nat. Rev. Immunol. 10, 365–376. https://doi.org/10.1038/nri2748
- 26. Collard C.D., Väkevä A., Büküsoglu C., Zünd G., Sperati C.J., Colgan S.P., Stahl G.L. (1997) Reoxygenation of hypoxic human umbilical vein endothelial cells activates the classic complement pathway. Circulation. 96, 326‒333. https://doi.org/10.1161/01.cir.96.1.326
- 27. Collard C.D., Agah A., Stahl G.L. (1998) Complement activation following reoxygenation of hypoxic human endothelial cells: role of intracellular reactive oxygen species, NF-kappaB and new protein synthesis. Immunopharmacology. 39, 39–50. https://doi.org/10.1016/s0162-3109 (97)00096-9
- 28. Pei Y., Zhang J., Qu J., Rao Y., Li D., Gai X., Chen Y., Liang Y., Sun Y. (2022) Complement component 3 protects human bronchial epithelial cells from cigarette smoke-induced oxidative stress and prevents incessant apoptosis. Front. Immunol. 13, 1035930. https://doi.org/10.3389/fimmu.2022.1035930
- 29. Zhong F., Hu Z., Jiang K., Lei B., Wu Z., Yuan G., Luo H., Dong C., Tang B., Zheng C., Yang S., Zeng Y., Guo Z., Yu S., Su H., Zhang G., Qiu X., Tomlinson S., He S. (2019) Complement C3 activation regulates the production of tRNA-derived fragments Gly-tRFs and promotes alcohol-induced liver injury and steatosis. Cell. Res. 29, 548–561. https://doi.org/10.1038/s41422-019-0175-2
- 30. Диже Э.Б., Игнатович И.А., Буров С.В., Похвощева А.В., Акифьев Б.Н., Ефремов А.М., Перевозчиков А.П., Орлов С.В. (2006) Комплексы ДНК с катионными пептидами: условия формирования и факторы, влияющие на их проникновение в клетки млекопитающих. Биохимия. 71, 1659–1667.
- 31. Shavva V.S., Bogomolova A.M., Nikitin A.A., Dizhe E.B., Oleinikova G.N., Lapikov I.A., Tanyanskiy D.A., Perevozchikov A.P., Orlov S.V. (2017) FOXO1 and LXRβ downregulate the apolipoprotein A-I gene expression during hydrogen peroxide-induced oxidative stress in HepG2 cells. Cell Stress Chaperones. 22, 123–134. https://doi.org/10.1007/s12192-016-0749-6
- 32. Tangeman L., Wyatt C.N., Brown T.L. (2012) Knockdown of AMP-activated protein kinase alpha 1 and alpha 2 catalytic subunits. J. RNAi Gene Silenc. 8, 470–478.
- 33. Mogilenko D.A., Dizhe E.B., Shavva V.S., Lapikov I.A., Orlov S.V., Perevozchikov A.P. (2009) Role of the nuclear receptors HNF4α, PPARα, and LXRs in the TNFα-mediated inhibition of human apolipoprotein A-I gene expression in HepG2 cells. Biochemistry. 48, 11950–11960. https://doi.org/10.1021/bi9015742
- 34. Shavva V.S., Bogomolova A.M., Nikitin A.A., Dizhe E.B., Tanyanskiy D.A., Efremov A.M., Oleinikova G.N., Perevozchikov A.P., Orlov S.V. (2017) Insulin-mediated downregulation of apolipoprotein A-I gene in human hepatoma cell line HepG2: the role of interaction between FOXO1 and LXRβ transcription factors. J. Cell. Biochem. 118, 382–396. https://doi.org/10.1002/jcb.25651
- 35. Shavva V.S., Mogilenko D.A., Bogomolova A.M., Nikitin A.A., Dizhe E.B., Efremov A.M., Oleinikova G.N., Perevozchikov A.P., Orlov S.V. (2016) PPARγ represses apolipoprotein A-I gene but impedes TNFα-mediated ApoA-I downregulation in HepG2 cells. J. Cell. Biochem. 117, 2010–2022. https://doi.org/10.1002/jcb.25498
- 36. Andrews N.C., Faller D.V. (1991) A rapid micropreparation technique for extraction of DNA-binding proteins from limiting numbers of mammalian cells. Nucl. Acids Res. 19, 2499. https://doi.org/10.1093/nar/19.9.2499
- 37. Aikawa R., Komuro I., Yamazaki T., Zou Y., Kudoh S., Tanaka M., Shiojima I., Hiro Y., Yazaki Y. (1997) Oxidative stress activates extracellular signal-regulated kinases through Src and Ras in cultured cardiac myocytes of neonatal rats. J. Clin. Invest. 100, 1813–1821. https://doi.org/10.1172/JCI119709
- 38. Kim M.J., Byun J.Y., Yun C.H., Park I.C., Lee K.H., Lee S.J. (2008) c-Src-p38 mitogen-activated protein kinase signaling is required for Akt activation in response to ionizing radiation. Mol. Cancer Res. 6, 1872–1880. https://doi.org/10.1158/1541-7786.MCR‑08-0084
- 39. Yoshizumi M., Abe J., Haendeler J., Huang Q., Berk B.C. (2000) Src and Cas mediate JNK activation but not ERK1/2 and p38 kinases by reactive oxygen species. J. Biol. Chem. 275, 11706–11712. https://doi.org/10.1074/jbc.275.16.11706
- 40. Giannoni E., Buricchi F., Raugei G., Ramponi G., Chiarugi P. (2005) Intracellular reactive oxygen species activate Src tyrosine kinase during cell adhesion and anchorage-dependent cell growth. Mol. Cell. Biol. 25, 6391–6403. https://doi.org/10.1128/MCB.25.15.6391-6403.2005
- 41. Han Y., Wang Q., Song P., Zhu Y., Zou M.H. (2010) Redox regulation of the AMP-activated protein kinase. PLoS One. 5, e15420. https://doi.org/10.1371/journal.pone.0015420
- 42. Awad H., Nolette N., Hinton M., Dakshinamurti S. (2014) AMPK and FoxO1 regulate catalase expression in hypoxic pulmonary arterial smooth muscle. Pediatr. Pulmonol. 49, 885–897. https://doi.org/10.1002/ppul.22919
- 43. Cheng Z., Guo S., Copps K., Dong X., Kollipara R., Rodgers J.T., Depinho R.A., Puigserver P., White M.F. (2009) Foxo1 integrates insulin signaling with mitochondrial function in the liver. Nat. Med. 15, 1307–1311. https://doi.org/10.1038/nm.2049
- 44. Liu X., Cui Y., Li M., Xu H., Zuo J., Fang F., Chang Y. (2013) Cobalt protoporphyrin induces HO‑1 expression mediated partially by FOXO1 and reduces mitochondria-derived reactive oxygen species production. PLoS One. 8, 1–9. https://doi.org/10.1371/journal.pone.0080521
- 45. Sengupta A., Molkentin J.D., Paik J.H., DePinho R.A., Yutzey K.E. (2011) FoxO transcription factors promote cardiomyocyte survival upon induction of oxidative stress. J. Biol. Chem. 286, 7468–7478. https://doi.org/10.1074/jbc.M110.179242
- 46. Klotz L.O., Sánchez-Ramos C., Prieto-Arroyo I., Urbánek P., Steinbrenner H., Monsalve M. (2015) Redox regulation of FoxO transcription factors. Redox Biol. 6, 51–72. https://doi.org/10.1016/j.redox.2015.06.019
- 47. Rauluseviciute I., Riudavets-Puig R., Blanc-Mathieu R., Castro-Mondragon J. A., Ferenc K., Kumar V., Lemma R.B., Lucas J., Chèneby J., Baranasic D., Khan A., Fornes O., Gundersen S., Johansen M., Hovig E., Lenhard B., Sandelin A., Wasserman W.W., Parcy F., Mathelier A. (2024) JASPAR2024: 20th anniversary of the open-access database of transcription factor binding profiles. Nucl. Acids Res. 52, D174–D182. https://doi.org/10.1093/nar/gkad1059
- 48. Hirota K., Sakamaki J.I., Ishida J., Shimamoto Y., Nishihara S., Kodama N., Ohta K., Yamamoto M., Tanimoto K., Fukamizu A. (2008) A combination of HNF‑4 and Foxo1 is required for reciprocal transcriptional regulation of glucokinase and glucose‑6-phosphatase genes in response to fasting and feeding. J. Biol. Chem. 283, 32432–32441. https://doi.org/10.1074/jbc.M806179200
- 49. Ganjam G.K., Dimova E.Y., Unterman T.G., Kietzmann T. (2009) FoxO1 and HNF‑4 are involved in regulation of hepatic glucokinase gene expression by resveratrol. J. Biol. Chem. 284, 30783–30797. https://doi.org/10.1074/jbc.M109.045260
- 50. Ghezzi P. (2011) Role of glutathione in immunity and inflammation in the lung. Int. J. Gen. Med. 4, 105–113. https://doi.org/10.2147/IJGM.S15618
- 51. Nikolaidou-Neokosmidou V., Zannis V.I., Kardassis D. (2006) Inhibition of hepatocyte nuclear factor 4 transcriptional activity by the nuclear factor kappaB pathway. Biochem. J. 398, 439–450. https://doi.org/10.1042/BJ20060169
- 52. Ehle C., Iyer-Bierhoff A., Wu Y., Xing S., Kiehntopf M., Mosig A.S., Godmann M., Heinzel T. (2024) Downregulation of HNF4A enables transcriptomic reprogramming during the hepatic acute-phase response. Commun. Biol. 7, 589. https://doi.org/10.1038/s42003-024-06288-1
- 53. Cianflone K., Xia Z., Chen L.Y. (2003) Critical review of acylation-stimulating protein physiology in humans and rodents. Biochim. Biophys. Acta. 1609, 127–143. https://doi.org/10.1016/s0005-2736 (02)00686-7
- 54. Lehtinen M.K., Yuan Z., Boag P.R., Yang Y., Villen J., Becker E.B., DiBacco S., de la Iglesia N., Gygi S., Blackwell T.K., Bonni A. (2006) A conserved MST-FOXO signaling pathway mediates oxidative-stress responses and extends life span. Cell. 125, 987–1001. https://doi.org/10.1016/j.cell.2006.03.046
- 55. Yamagata K., Daitoku H., Takahashi Y., Namiki K., Hisatake K., Kako K., Mukai H., Kasuya Y., Fukamizu A. (2008) Arginine methylation of FOXO transcription factors inhibits their phosphorylation by Akt. Mol. Cell. 32, 221–231. https://doi.org/10.1016/j.molcel.2008.09.013
- 56. Asada S., Daitoku H., Matsuzaki H., Saito T., Sudo T., Mukai H., Iwashita S., Kako K., Kishi T., Kasuya Y., Fukamizu A. (2007) Mitogen-activated protein kinases, Erk and p38, phosphorylate and regulate Foxo1. Cell Signal. 19, 519–527. https://doi.org/10.1016/j.cellsig.2006.08.015
- 57. Van Der Heide L.P., Hoekman M.F.M., Smidt M.P. (2004) The ins and outs of FoxO shuttling: mechanisms of FoxO translocation and transcriptional regulation. Biochem. J. 380, 297–309. https://doi.org/10.1042/BJ20040167
- 58. Sunayama J., Tsuruta F., Masuyama N., Gotoh Y. (2005) JNK antagonizes Akt-mediated survival signals by phosphorylating 14-3-3. J. Cell Biol. 170, 295–304. https://doi.org/10.1083/jcb.200409117
- 59. Weng Q., Liu Z., Li B., Liu K., Wu W., Liu H. (2016) Oxidative stress induces mouse follicular granulosa cells apoptosis via JNK/FoxO1 pathway. PLoS One. 11, e0167869. https://doi.org/10.1371/journal.pone.0167869
- 60. Saline M., Badertscher L., Wolter M., Lau R., Gunnarsson A., Jacso T., Norris T., Ottmann C., Snijder A. (2019) AMPK and AKT protein kinases hierarchically phosphorylate the N-terminus of the FOXO1 transcription factor, modulating interactions with 14-3-3 proteins. J. Biol. Chem. 294, 13106–13116. https://doi.org/10.1074/jbc.RA119.008649