- PII
- S30345553S0026898425050075-1
- DOI
- 10.7868/S3034555325050075
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 59 / Issue number 5
- Pages
- 821-834
- Abstract
- Breast cancer remains one of the leading causes of cancer mortality among women, and the study of epigenetic mechanisms is an important task of molecular oncology in breast cancer. In this study, we analyzed the expression levels of 8 microRNAs (miR-125b-5p, -127-5p, -129-5p, -132-3p, -148a-3p, -193a-5p, -24-2-5p, -34b-3p) and methylation of promoter regions of 7 microRNA genes in a representative sample of 40 and 70 paired samples of tumor and normal breast tissue, respectively, and showed hypermethylation of promoter regions of 7 genes and statistically significant decrease in expression levels of 8 microRNAs in tumor. For three genes (MIR125B-1, MIR129-2, MIR148A), inverse relationships between methylation and expression (r < −0.5) were revealed, indicating their possible epigenetic regulation. Statistically significant positive correlations of expression levels were revealed for 7 pairwise combinations of miRNAs, suggesting their coordinated functioning. Indeed, for the pairs miR-127-5p/miR-125b-5p, miR-148a-3p/miR-125b-5p, miR-148a-3p/miR-132-3p, miR-34b-3p/miR-193a-5p, common mRNA targets and involvement in biological processes, including pathways associated with epigenetic regulation, proliferation and metastasis, were revealed. The miRNA–mRNA regulatory network constructed involving DNMTs and EZH2 highlights their potential role in breast cancer progression and demonstrates diagnostic and prognostic significance.
- Keywords
- микроРНК коэкспрессия гиперметилирование рак молочной железы анализ обогащения GO KEGG
- Date of publication
- 31.01.2026
- Year of publication
- 2026
- Number of purchasers
- 0
- Views
- 65
References
- 1. Bray F., Laversanne M., Sung H., Ferlay J., Siegel R.L., Soerjomataram I., Jemal A. (2024) Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 74(3), 229–263. https://doi.org/10.3322/caac.21834
- 2. Polyak K. (2011) Heterogeneity in breast cancer. J. Clin. Invest. 121(10), 3786–3788. https://doi.org/10.1172/JCI60534
- 3. He L., Hannon G.J. (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat. Rev. Genet. 5(7), 522–531. https://doi.org/10.1038/nrg1379
- 4. Iorio M.V., Croce C.M. (2012) microRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol. Med. 4(3), 143–159. https://doi.org/10.1002/emmm.201100209
- 5. Muñoz J.P., Pérez-Moreno P., Pérez Y., Calaf G.M. (2023) The role of MicroRNAs in breast cancer and the challenges of their clinical application. Diagnostics (Basel). 13(19), 3072. https://doi.org/10.3390/diagnostics13193072
- 6. Lin S., Gregory R I. (2015) MicroRNA biogenesis pathways in cancer. Nat. Rev. Cancer. 15(6), 321–333. https://doi.org/10.1038/nrc3932
- 7. Aure M.R., Fleischer T., Bjørklund S., Ankill J., Castro-Mondragon J.A., OSBREAC; Børresen-Dale A.L., Tost J., Sahlberg K.K., Mathelier A., Tekpli X., Kristensen V.N. (2021) Crosstalk between microRNA expression and DNA methylation drives the hormone-dependent phenotype of breast cancer. Genome Med. 13(1), 72. https://doi.org/10.1186/s13073-021-00880-4
- 8. Saviana M., Le P., Micalo L., Del Valle-Morales D., Romano G., Acunzo M., Li H., Nana-Sinkam P. (2023) Crosstalk between miRNAs and DNA methylation in cancer. Genes (Basel). 14(5), 1075. https://doi.org/10.3390/genes14051075
- 9. Ma L., Li C., Yin H., Huang J., Yu S., Zhao J., Tang Y., Yu M., Lin J., Ding L., Cui Q. (2023) The mechanism of DNA methylation and miRNA in breast cancer. Int. J. Mol. Sci. 24(11), 9360. https://doi.org/10.3390/ijms24119360
- 10. Szczepanek J., Tretyn A. (2023) MicroRNA-mediated regulation of histone-modifying enzymes in cancer: mechanisms and therapeutic implications. Biomolecules. 13(11), 1590. https://doi.org/10.3390/biom13111590
- 11. Cao K., Li B., Zhang Y.W., Song H., Chen Y.G., Gong Y.J., Li H.Y., Zuo S. (2021) miR‑29b restrains cholangiocarcinoma progression by relieving DNMT3B-mediated repression of CDKN2B expression. Aging (Albany NY). 13(4), 6055–6065. https://doi.org/10.18632/aging.202549
- 12. Shao T., Wang G., Chen H., Xie Y., Jin X., Bai J., Xu J., Li X., Huang J., Jin Y., Li Y. (2019) Survey of miRNA-miRNA cooperative regulation principles across cancer types. Brief. Bioinform. 20(5), 1621–1638. https://doi.org/10.1093/bib/bby038
- 13. Briskin D., Wang P.Y., Bartel D.P. (2020) The biochemical basis for the cooperative action of microRNAs. Proc. Natl. Acad. Sci. U.S.A. 117(30), 17764–17774. https://doi.org/10.1073/pnas.1920404117
- 14. Bazyari M.J., Aghaee-Bakhtiari S.H. (2024) MiRNA target enrichment analysis of co-expression network modules reveals important miRNAs and their roles in breast cancer progression. J. Integr. Bioinform. 21(4), 20220036. https://doi.org/10.1515/jib‑2022–0036
- 15. Varghese R.S., Barefoot M.E., Jain S., Chen Y., Zhang Y., Alley A., Kroemer A.H., Tadesse M.G., Kumar D., Sherif Z.A., Ressom H.W. (2021) Integrative analysis of DNA methylation and microRNA expression reveals mechanisms of racial heterogeneity in hepatocellular carcinoma. Front. Genet. 12, 708326. https://doi.org/10.3389/fgene.2021.708326
- 16. Liu B., Shyr Y., Cai J., Liu Q. (2018) Interplay between miRNAs and host genes and their role in cancer. Brief. Funct. Genomics. 18(4), 255–266. https://doi.org/10.1093/bfgp/elz002
- 17. Cantini L., Bertoli G., Cava C., Dubois T., Zinovyev A., Caselle M., Castiglioni I., Barillot E., Martignetti L. (2019) Identification of microRNA clusters cooperatively acting on epithelial to mesenchymal transition in triple negative breast cancer. Nucleic. Acids. Res. 47(5), 2205–2215.https://doi.org/10.1093/nar/gkz016
- 18. TNM Classification of Malignant Tumours. (2017) Eds.: J.D Brierley, M. K. Gospodarowicz, C. Wittekind. John Wiley & Sons
- 19. World Medical Association. (2013) World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA. 310, 2191–2194. https://doi.org/10.1001/jama.2013.281020
- 20. Loginov V.I., Pronina I.V., Filippova E.A., Burdennyy A.M., Lukina S.S., Kazubskaya T.P., et al. (2022) Aberrant methylation of 20 miRNA genes specifically involved in various steps of ovarian carcinoma spread: from primary tumors to peritoneal macroscopic metastases. Int. J. Mol. Sci. 23, 1300. https://doi.org/10.3390/ijms23031300
- 21. Liang L., Xu W.Y., Shen A., Cen H.Y., Chen Z.J., Tan L., Zhang L.M., Zhang Y., Fu J.J., Qin A.P., Lei X.P., Li S.P., Qin Y.Y., Huang J.H., Yu X.Y. (2022) Promoter methylation-regulated miR‑148a‑3p inhibits lung adenocarcinoma (LUAD) progression by targeting MAP3K9. Acta Pharmacol. Sin. 43(11), 2946–2955. https://doi.org/10.1038/s41401-022-00893-8
- 22. Wang Y., Hu Y., Guo J., Wang L. (2019) miR‑148a‑3p suppresses the proliferation and invasion of esophageal cancer by targeting DNMT1. Genet. Test Mol. Biomarkers. 23(2), 98–104. https://doi.org/10.1089/gtmb.2018.0285
- 23. Chen Q., Wang Y., Dang H., Wu X. (2021) MicroRNA‑148a‑3p inhibits the proliferation of cervical cancer cells by regulating the expression levels of DNMT1 and UTF1. Oncol. Lett. 22(2), 617. https://doi.org/10.3892/ol.2021.12878
- 24. Xu C., Zhou G., Sun Z., Zhang Z., Zhao H., Jiang X. (2022) miR‑148a‑3p inhibits the proliferation and migration of bladder cancer via regulating the expression of ROCK‑1. PeerJ. 10, e12724. https://doi.org/10.7717/peerj.12724
- 25. Song M., Liu J., Zheng X., Zhou X., Feng Z., Hu W. (2021) MiR‑148a‑3p targets CEMIP to suppress the genesis of gastric cancer cells. Biochem. Biophys. Res. Commun. 575, 42–49. https://doi.org/10.1016/j.bbrc.2021.08.039
- 26. Chen H., Xu Z. (2015) Hypermethylation-associated silencing of miR‑125a and miR‑125b: a potential marker in colorectal cancer. Dis. Markers. 2015, 345080. https://doi.org/10.1155/2015/345080
- 27. Wu S., Huang S., Ding J., Zhao Y., Liang L., Liu T., Zhan R., He X. (2010) Multiple microRNAs modulate p21Cip1/Waf1 expression by directly targeting its 3’ untranslated region. Oncogene. 29(15), 2302–2308. https://doi.org/10.1038/onc.2010.34
- 28. Bandi N., Vassella E. (2011) miR‑34a and miR‑15a/16 are co-regulated in non-small cell lung cancer and control cell cycle progression in a synergistic and Rb-dependent manner. Mol. Cancer .10(1), 55. https://doi.org/10.1186/1476-4598-10-55
- 29. Kandi R., Gutti U., Saladi R.G., Gutti R.K. (2015) MiR‑125b and miR‑99a encoded on chromosome 21 co-regulate vincristine resistance in childhood acute megakaryoblastic leukemia. Hematol. Oncol. Stem. Cell Ther. 8(2), 95–97. https://doi.org/10.1016/j.hemonc.2014.11.008
- 30. Zhao Y., Cui X., Zhu W., Chen X., Shen C., Liu Z., Yang G., Liu Y., Zhao S. (2017) Synergistic regulatory effects of microRNAs on brain glioma cells. Mol. Med. Rep. 16(2), 1409–1416. https://doi.org/10.3892/mmr.2017.6709
- 31. Borzi C., Calzolari L., Centonze G., Milione M., Sozzi G., Fortunato O. (2017) mir‑660-p53-mir‑486 network: a new key regulatory pathway in lung tumorigenesis. Int. J. Mol. Sci. 18(1), 222. https://doi.org/10.3390/ijms18010222
- 32. Lai X., Gupta S.K., Schmitz U., Marquardt S., Knoll S., Spitschak A., Wolkenhauer O., Pützer B.M., Vera J. (2018) MiR‑205-5p and miR‑342-3p cooperate in the repression of the E2F1 transcription factor in the context of anticancer chemotherapy resistance. Theranostics. 8(4), 1106–1120. https://doi.org/10.7150/thno.19904
- 33. Yang Y., Xing Y., Liang C., Hu L., Xu F., Chen Y. (2015) Crucial microRNAs and genes of human primary breast cancer explored by microRNA-mRNA integrated analysis. Tumor. Biol. 36(7), 5571–5579. doi: 10.1007/s13277-015-3227-3
- 34. Yang D., Zhan M., Chen T., Chen W., Zhang Y., Xu S., Yan J., Huang Q., Wang J. (2017) miR‑125b‑5p enhances chemotherapy sensitivity to cisplatin by down-regulating Bcl2 in gallbladder cancer. Sci. Rep. 7, 43109. https://doi.org/10.1038/srep43109
- 35. Zhang C., Wan X., Tang S., Li K., Wang Y., Liu Y., Sha Q., Zha X., Liu Y. (2020) miR‑125b‑5p/STAT3 pathway regulated by mTORC1 Plays a Critical Role in Promoting cell proliferation and tumor growth. J. Cancer. 11(4), 919–931. https://doi.org/10.7150/jca.33696