- PII
- S30345553S0026898425050096-1
- DOI
- 10.7868/S3034555325050096
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 59 / Issue number 5
- Pages
- 845-854
- Abstract
- We present GeneLens, a Python package for comprehensive analysis of differentially expressed genes and biomarker discovery. The package consists of two core modules: FSelector for biomarker identification by utilizing Monte Carlo simulations of L1-regularized models, and NetAnalyzer for functional prediction of selected gene sets based on the topology of their protein-protein interaction networks.The FSelector includes: (1) automated gene selection through iterative bootstrap sampling; (2) calculation of gene significance weights taking into account ROC-AUC model performance and their number in simulations; (3) adaptive thresholding for feature space reduction. NetAnalyzer performs pathway enrichment analysis while integrating significance weights from FSelector. Implemented as a PIP module, GeneLens provides standardized algorithms for applying machine learning and network analysis methods in differential gene expression studies, along with automated model hyperparameter tuning and visualization tools.
- Keywords
- транскриптомика машинное обучение Монте-Карло биомаркеры дифференциально экспрессирующиеся гены сетевой анализ
- Date of publication
- 31.01.2026
- Year of publication
- 2026
- Number of purchasers
- 0
- Views
- 55
References
- 1. Altman N., Krzywinski M. (2018) The curse of dimensionality. Nat. Methods. 15, 399–400.
- 2. Altman N., Krzywinski M. (2017) Ensemble methods: bagging and random forests. Nat. Methods. 14, 933–935.
- 3. Осьмак Г., Писклова М. (2025) Транскриптомика и “проклятие размерности”: Монте-Карло симуляции классификационных моделей как инструмент анализа многомерных данных в задачах поиска маркеров биологических процессов. Молекуляр. биология. 59, 143–149.
- 4. Pisklova M., Osmak G. (2024) Unveiling miRNA‑124 as a biomarker in hypertrophic cardiomyopathy: an innovative approach using machine learning and intelligent data analysis. Int. J. Cardiol. 410, 132220.
- 5. Osmak G., Kiselev I., Baulina N., Favorova O. (2020) From miRNA target gene network to miRNA function: miR‑375 might regulate apoptosis and actin dynamics in the heart muscle via Rho-GTPases-dependent pathways. Int. J. Mol. Sci. 21, 9670.
- 6. Tibshirani R. (1996) Regression shrinkage and selection via the lasso. J. R. Stat. Soc.: Ser. B (Methodological). 58, 267–288.
- 7. Hastie T., Tibshirani R., Friedman J.H., Friedman J.H. (2009) The elements of statistical learning: data mining, inference, and prediction. N.Y.: Springer.